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Suppose that K � Rd is compact and that we are given a function f 2 CðKÞ
together with distinct points xi 2 K; 14i4n: Radial basis interpolation consists of

choosing a fixed (basis) function g :Rþ ! R and looking for a linear combination of

the translates gðjx � xj jÞ which interpolates f at the given points. Specifically, we

look for coefficients cj 2 R such that

FðxÞ ¼
Xn

j¼1

cjgðjx � xj jÞ

has the property that FðxiÞ ¼ f ðxiÞ; 14i4n: The Fekete-type points of this process

are those for which the associated interpolation matrix ½gðjxi � xj jÞ�14i;j4n has

determinant as large as possible (in absolute value). In this work, we show that, in

the univariate case, for a broad class of functions g; among all point sequences

which are (strongly) asymptotically distributed according to a weight function,

the equally spaced points give the asymptotically largest determinant. This gives

strong evidence that the Fekete points themselves are indeed asymptotically equally

spaced. # 2002 Elsevier Science (USA)
1. THE CASE OF gðxÞ ¼ x

In the case of classical polynomial interpolation, Fekete points have been
much studied and are known to be nearly ‘‘optimal’’ (see e.g. [11] or [10]
(where they are referred to as extremal fundamental systems)). In contrast,
very little is known about optimal points for radial basis interpolation, a
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FEKETE-TYPE POINTS FOR UNIVARIATE RADIAL BASIS INTERPOLATION 253
practical method of data fitting that has found much success in a myriad of
applications (see e.g. [2–5]).

To make our problem more precise, suppose that K � Rd is compact and
that we are given a function g :Rþ ! R: By Fekete-type points (of order n)
for g (on K) we mean a set of n points xi 2 K ; 14i4n for which

jdet½gðjxi � xjjÞ�j

is as large as possible.
In [1] we began a study of Fekete-type points for radial basis

interpolation. From this earlier work it appeared that a strong case could
be made for the conjecture that, at least in the univariate case, the Fekete
points for a rather broad class of functions g; were asymptotically uniformly
distributed. However, as opposed to the classical Fekete points which
maximize the polynomial Vandermonde determinant, there is no
known analytic characterization of such Radial Basis Fekete-type points.
Hence their asymptotic analysis seems to be a rather difficult problem.
In this present work we give further strong evidence that these points
are indeed asymptotically uniformly distributed by proving that among
all point sequences which are (strongly) asymptotically distributed accord-
ing to a weight function (see Definition 1.2), the equally spaced points
give the asymptotically largest determinant (see Corollary 2.2 for a
precise statement). The arguments are based on a rather remark-
able relationship with the entropy of the weight function, given in
Theorem 2.1. Loosely speaking, the entropy of the weight plays the
same role as does the logarithmic energy of the limiting measure in
the classical case.

We begin by discussing the special (and as it turns out, fundamental) case
of gðxÞ ¼ x:

Suppose then that K ¼ ½0; 1� and that 04x15x25 � � �5xnþ141 (we take
n þ 1 points for technical simplicity). We are concerned with the determinant

Dn :¼ det½jxi � xjj�14i;j4nþ1:

If we set hi :¼ xiþ1 � xi; 14i4n; then we have

Dn ¼

0 h1 h1 þ h2 � � � � � � h1 þ h2 þ � � � þ hn

h1 0 h2 � � � � � � h2 þ � � � þ hn

h1 þ h2 h2 0 h3 � � � ..
.

..

. . .
. . .

.
hn

h1 þ h2 þ � � � þ hn � � � hn 0

��������������

��������������



BOS AND MAIER254
which, as is not hard to see, is

Dn ¼ ð�1Þn2n�1
Yn

i¼1

hi

 ! Xn

i¼1

hi

 !
ð1Þ

so that

jDnj ¼ 2n�1
Yn

i¼1

hi

 ! Xn

i¼1

hi

 !
:

Clearly, for this latter value to be maximized,
Pn

i¼1 hi must be as large as
possible. It follows that

Pn
i¼1 hi ¼ 1 and that x1 ¼ 0 and xnþ1 ¼ 1:

Consequently, we are left with the problem of maximizing
Qn

i¼1 hi subject
to the constraint that

Pn
i¼1 hi ¼ 1: But, as is well-known, this maximum is

uniquely attained for

hi ¼
1

n
; 14i4n;

i.e. precisely for the equally spaced points

xi ¼
i � 1

n
; 14i4n þ 1;

which are clearly uniformly distributed on ½0; 1�:
Thus the Fekete points for gðxÞ ¼ x are indeed equally spaced. In the

sequel, for other functions g; we will compare the determinants for equally
spaced points with those for competing distributions.

Definition 1.1. We will say that w 2 C½0; 1� with wðxÞ > 0; 8x 2 ½0; 1�
and Z 1

0

wðxÞ dx ¼ 1

is an allowable weight function.

Now, to see the behaviour of the determinant Dn when the points are
asymptotically distributed according to an allowable weight function,
consider first the special case when

xi :¼ W�1 i � 1

n

	 

; 14i4n þ 1;

where

WðxÞ :¼
Z x

0

wðtÞ dt:
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It is not difficult to see that, in this case,

lim
n!1

1

n

Xnþ1

i¼1

f ðxiÞ ¼
Z 1

0

f ðxÞwðxÞ dx

for every f 2 C½0; 1�; justifying our calling these points equally spaced with
respect to wðxÞ:

Continuing, we may calculate

nhi ¼ nðxiþ1 � xiÞ ¼
W�1 i

n

	 

� W�1 i � 1

n

	 

i

n
� i � 1

n

¼ d

dx
W�1ðciÞ for some ci;

i � 1

n
4ci4

i

n
:

But

d

dx
W�1ðxÞ ¼ 1

dW

dx
ðW�1ðxÞÞ

¼ 1

wðW�1ðxÞÞ

and so,

nhi ¼
1

wðW�1ðciÞÞ
;

i � 1

n
4ci4

i

n
: ð2Þ

It follows from (1) that

logððnnjDnjÞ1=nÞ ¼ logð2ðn�1Þ=nÞ þ 1

n

Xn

i¼1

logðnhiÞ

¼ logð2ðn�1Þ=nÞ þ 1

n

Xn

i¼1

log
1

wðW�1ðciÞÞ

	 

:

The second term is a Riemann sum for
R 1

0 logð 1
wðW�1ðxÞÞÞ dx which, by the

change of variables, x0 ¼ W�1ðxÞ; is easily seen to be

Z 1

0

log
1

wðxÞ

	 

wðxÞ dx ¼: logðEðwÞÞ;
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the log of the entropy of the weight function w: Hence, we have the already
interesting formula

lim
n!1

ðnnjDnjÞ1=n ¼ 2 exp

Z 1

0

log
1

wðxÞ

	 

wðxÞ dx

	 

¼ 2EðwÞ:

We will use property (2) in the following definition.

Definition 1.2. Suppose that wðxÞ is an allowable weight function and
that 04x15x25 � � �5xnþ141 is a triangular array of points. We say that
the points are (strongly) asymptotically distributed with weight wðxÞ if for
each 14i4n;

nhi ¼
1

wðW�1ðciÞÞ
for some

i � 1

n
4ci4

i

n
:

Remark. For technical simplicity we do not consider a weaker form of
asymptotic distribution. Weak-* convergence, for example, allows point
repetitions for which our determinants would be 0 and hence a result such as
Proposition 1.3 would not hold.

With this definition then, we have immediately

Proposition 1.3. Suppose that 04x15x25 � � �5xn41 is a distinct set

of points, asymptotically distributed with respect to the allowable weight wðxÞ:
Setting Dn ¼ det½jxi � xjj�14i;j4n; we have,

lim
n!1

ðnnjDnjÞ1=n ¼ 2 exp

Z 1

0

log
1

wðxÞ

	 

wðxÞ dx

	 

¼ 2EðwÞ:

Proposition 1.3 can be used to give an alternative, although somewhat
weaker, explanation of why the equally spaced points yield a larger
determinant than points asymptotically distributed according to any other
competing allowable weight function. Precisely, since the limiting expression

2 exp

Z 1

0

log
1

wðxÞ

	 

wðxÞ dx

	 

¼ 2EðwÞ ð3Þ

is twice the exponential of the entropy of w; we may recall that, as is well-
known (cf. [9]), the function of maximum entropy is just w � 1:
Alternatively, note that this limiting expression is also twice the Geometric
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Mean of the function 1=wðxÞ with respect to the weight wðxÞ: Then by the
Arithmetic–Geometric Mean inequality,

2 exp

Z 1

0

log
1

wðxÞ

	 

wðxÞ dx

	 

42

Z 1

0

1

wðxÞwðxÞ dx

	 

¼ 2:

But 2 is just the value of the Geometric Mean (3) for the weight wðxÞ � 1;
i.e., for that corresponding to equally spaced points. If we then write Dw

n for
the determinant of points asymptotically distributed according to weight w;
we have

lim
n!1

jDw
n j

jD1
nj

	 
1=n

¼ lim
n!1

nnjDw
n j

nnjD1
nj

	 
1=n

¼
2 expð

R 1

0
logð 1

wðxÞÞwðxÞ dxÞ

2 expð
R 1

0 logð1
1
Þ1 dxÞ

ð4Þ

51

for wc1: It follows that for wc1 and large n; jDw
n j is exponentially smaller

than jD1
nj:

2. THE CASE OF GENERAL g

To repeat, in the first section we showed that for gðxÞ ¼ x; if the points
are asymptotically distributed according to the allowable weight function
wðxÞ then

lim
n!1

ðnnjDnjÞ1=n ¼ 2 exp

Z 1

0

log
1

wðxÞ

	 

wðxÞ dx

	 

:

Clearly then, for gðxÞ ¼ ax; since each entry in the matrix is multiplied by
the factor a;

lim
n!1

ðnnjDnjÞ1=n ¼ 2jaj exp

Z 1

0

log
1

wðxÞ

	 

wðxÞ dx

	 


¼ 2jg0ð0Þj exp

Z 1

0

log
1

wðxÞ

	 

wðxÞ dx

	 


seeing that a ¼ g0ð0Þ:
The remarkable fact is that this latter formula holds (essentially) in

general.
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Theorem 2.1. Suppose that g 2 C2½0; 1� with gðxÞ ¼ g0ð0Þx þ rðxÞ where

g0ð0Þa0 and r 2 C2½0; 1� is such that r0ð0Þ ¼ 0: Suppose further that g satisfies

the technical condition that �g0ð0Þ is not an eigenvalue of the operator A : C

½0; 1� ! C½0; 1� given by

ðAf ÞðxÞ ¼ f ð0Þ rxð1Þ þ rxð0Þ þ r0xð0Þ
2

þ f ð1Þ rxð0Þ þ rxð1Þ � r0xð1Þ
2

þ 1

2

Z 1

0

r00xðyÞf ðyÞ dy;
ð5Þ

where

rxðyÞ :¼ rðjy � xjÞ: ð6Þ

Let wðxÞ be an allowable weight function. Then if 04x15x25 � � �5xnþ141
are asymptotically distributed according to w (in the sense of Definition 1.2),
we have

lim
n!1

ðnnjDnjÞ1=n ¼ 2jg0ð0Þj exp

Z 1

0

log
1

wðxÞ

	 

wðxÞ dx

	 


¼ 2jg0ð0ÞjEðwÞ;

where

Dn :¼ det ½gðjxi � xj jÞ�14i;j4nþ1: ð7Þ

Remark. (i) The operator A is compact and hence the technical
condition will always be satisfied by a slight perturbation of rðxÞ: Hence
the condition does not substantially reduce the generality of the theorem. (ii)
The (continuous) differentiability of rx at y ¼ x can be seen with the aid of
the Taylor expansion of r at 0 using r0ð0Þ ¼ 0:

The discussion following Proposition 1.3 gives the immediate

Corollary 2.2. Suppose that g 2 C2½0; 1� with g0ð0Þa0 satisfies the

technical condition of Theorem 2.1. Let wðxÞ be an allowable weight function.

Let Dw
n denote the determinant (7) for points asymptotically distributed

according to w. Then

lim
n!1

jDw
n j

jD1
nj

	 
1=n

¼ exp

Z 1

0

log
1

wðxÞ

	 

wðxÞ dx

	 

: ð8Þ
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Consequently, by the Arithmetic–Geometric Mean inequality, if wc1; Dw
n is

exponentially smaller than D1
n:

Proof. Using Theorem 2.1,

lim
n!1

jDw
n j

jD1
nj

	 
1=n

¼ lim
n!1

nnjDw
n j

nnjD1
nj

	 
1=n

¼
2jg0ð0Þj expð

R 1

0 logð 1
wðxÞÞwðxÞ dxÞ

2jg0ð0Þj expð
R 1

0
logð1

1
Þ1 dxÞ

¼
expð

R 1

0 logð 1
wðxÞÞwðxÞ dxÞ

expð
R 1

0
logð1

1
Þ1 dxÞ

¼ exp

Z 1

0

log
1

ðxÞ

	 

wðxÞ dx

	 


5 1

if wc1: ]

Proof of Theorem 2.1. Without loss of generality we may assume that
g0ð0Þ ¼ 1: Let Gn :¼ ½gðjxi � xjjÞ�14i;j4nþ1 and Fn :¼ ½jxi � xjj�14i;j4nþ1: Our
theorem, restated, is that

lim
n!1

ðnnjdetðGnÞjÞ1=n ¼ lim
n!1

ðnnjdetðFnÞjÞ1=n: ð9Þ

We will actually show the stronger statement that

lim
n!1

jdetðGnÞj
jdetðFnÞj

¼: c ð10Þ

exists and is strictly positive. For, from (10) it follows easily that

lim
n!1

ðnnjdetðGnÞjÞ1=n

ðnnjdetðFnÞjÞ1=n
¼ 1

and hence (9).
Now to show (10). Set hi :¼ xiþ1 � xi as before. Since detðGnÞ=detðFnÞ ¼

detðGnF�1
n Þ we consider the matrix GnF�1

n : An elementary calculation
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reveals that

F�1
n ¼ 1

2

h1 � S

h1S

1

h1
0 0 � � � 0

1

S

1

h1
�h1 þ h2

h1h2

1

h2
0 � � � 0 0

0
1

h2
�h2 þ h3

h2h3

1

h3
0 � � � 0

�
�
�

0 0
1

hn�1
�hn�1 þ hn

hn�1hn

1

hn

1

S
0 0

1

hn

hn � S

hnS

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

;

where S :¼
Pn

i¼1 hi ¼ xnþ1 � x1: We may then express F�1
n as the sum of a

rank one matrix and a tridiagonal matrix. Specifically,

F�1
n ¼ 1

2S

1 0 � � � 0 1

0 0 � � � 0 0

� �
� �
0 0 0

1 0 � � � 0 1

0
BBBBBBBBB@

1
CCCCCCCCCA

þ 1

2

� 1

h1

1

h1
0 0 � � � 0 0

1

h1
�h1 þ h2

h1h2

1

h2
0 � � � 0 0

0
1

h2
�h2 þ h3

h2h3

1

h3
0 � � � 0

�
�
�

0 0
1

hn�1
�hn�1 þ hn

hn�1hn

1

hn

0 0 0
1

hn

� 1

hn

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

:
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Note that the first and last columns of the tridiagonal part of F�1
n are the

coefficients of first divided differences at x1; x2 and xn; xnþ1; respectively, and
that the interior columns are (essentially) the coefficients of second divided
differences at xj�1; xj; xjþ1: Thus F�1

n may be considered as the discretization
of a certain differential operator.

Note further that, by Definition 1.2,

S ¼
Xn

i¼1

hi ¼
1

n

Xn

i¼1

1

wðW�1ðciÞÞ

and hence

lim
n!1

S ¼
Z 1

0

1

wðW�1ðxÞÞ dx ¼ 1;

by the change of variables t ¼ W�1ðxÞ:
For the sake of simplicity of presentation, let us assume that, in fact,

S ¼ 1; i.e., that x1 ¼ 0 and xnþ1 ¼ 1:
Now, since by assumption, gðxÞ ¼ x þ rðxÞ;

Gn ¼ ½gðjxi � xjjÞ� ¼ ½jxi � xjj þ rðjxi � xjjÞ� ¼ Fn þ Rn;

where

Rn :¼ ½rðjxi � xjjÞ�14i;j4nþ1:

It will be convenient for us to write Rn in the form

Rn ¼

r1ðx1Þ r1ðx2Þ � � � r1ðxnþ1Þ
r2ðx1Þ r2ðx2Þ � � � r2ðxnþ1Þ

� �
� �

rnþ1ðx1Þ rnþ1ðx2Þ � � � rnþ1ðxnþ1Þ

0
BBBBBB@

1
CCCCCCA
;

where

riðxÞ :¼ rðjx � xijÞ:
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Hence, GnF�1
n ¼ In þ RnF�1

n and we calculate

RnF�1
n ¼ 1

2

r1ðx1Þ þ r1ðxnþ1Þ 0 � � � 0 r1ðx1Þ þ r1ðxnþ1Þ
r2ðx1Þ þ r2ðxnþ1Þ 0 � � � 0 r2ðx1Þ þ r2ðxnþ1Þ

� 0 � � � 0 �
� 0 � � � 0 �

rnþ1ðx1Þ þ rnþ1ðxnþ1Þ 0 � � � 0 rnþ1ðx1Þ þ rnþ1ðxnþ1Þ

0
BBBBBB@

1
CCCCCCA

þ 1

2
ri½x1; x2� . . . ðhj þhj�1Þri½xj�1; xj; xjþ1� . . . �ri½xn; xnþ1�
� �

:

Here, and in the sequel, with an abuse of notation, In denotes the ðn þ
1Þðn þ 1Þ identity matrix. The last displayed matrix represents the entries of
the ith row and jth column with 14i4n þ 1 and 24j4n: The expressions
ri½x1; x2� and ri½xn; xnþ1� denote the first divided difference of ri at x1; x2 and
xn; xnþ1; respectively, whereas ri½xj�1; xj; xjþ1� denote the second divided
differences of ri at xj�1; xj; xjþ1:

Now, since r0ð0Þ ¼ 0; each ri 2 C2½0; 1� and hence we may write the
divided differences of ri in terms of first and second derivatives, i.e.

RnF�1
n ¼ 1

2

r1ðx1Þ þ r1ðxnþ1Þ 0 � � � 0 r1ðx1Þ þ r1ðxnþ1Þ
r2ðx1Þ þ r2ðxnþ1Þ 0 � � � 0 r2ðx1Þ þ r2ðxnþ1Þ

� 0 � � � 0 �
� 0 � � � 0 �

rnþ1ðx1Þ þ rnþ1ðxnþ1Þ 0 � � � 0 rnþ1ðx1Þ þ rnþ1ðxnþ1Þ

0
BBBBBB@

1
CCCCCCA

þ 1

2
r0iðdiÞ . . . ðhj þ hj�1Þ

r00i ðcijÞ
2

. . . �r0iðeiÞ
	 
 ð11Þ

for some cij 2 ½xj�1; xjþ1�; di 2 ½x1; x2� and ei 2 ½xn; xnþ1�:

Applying RnF�1
n to the vector of function evaluations ðf ðx1Þ; f ðx2Þ; . . . ; f

ðxnþ1ÞÞT we get

RnF�1
n

f ðx1Þ
f ðx2Þ

..

.

f ðxnþ1Þ

0
BBBBB@

1
CCCCCA
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¼ 1

2

ðr1ðx1Þ þ r1ðxnþ1ÞÞðf ðx1Þ þ f ðxnþ1ÞÞ
ðr2ðx1Þ þ r2ðxnþ1ÞÞðf ðx1Þ þ f ðxnþ1ÞÞ

..

.

ðrnþ1ðx1Þ þ rnþ1ðxnþ1ÞÞðf ðx1Þ þ f ðxnþ1ÞÞ

0
BBBBB@

1
CCCCCA

þ 1

2

r01ðd1Þf ðx1Þ � r01ðe1Þf ðxnþ1Þ

þ
Pn

j¼2

ðhj þ hj�1Þ
2

r001ðc1jÞf ðxjÞ

..

.

r0nþ1ðdnþ1Þf ðx1Þ � r0nþ1ðenþ1Þf ðxnþ1Þ

þ
Pn

j¼2

ðhj þ hj�1Þ
2

r00nþ1ðcnþ1;jÞf ðxjÞ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

Note that according to our assumption on S; x1 ¼ 0 and xnþ1 ¼ 1: Now
the sums in the second matrix again can be interpreted as Riemann sums, so
that RnF�1

n is a discrete approximation of the operator A : C½0; 1� ! C½0; 1�
given by

ðAf ÞðxÞ ¼ 1

2
ðrxð0Þ þ rxð1ÞÞðf ð0Þ þ f ð1ÞÞ

þ 1

2
r0xð0Þf ð0Þ þ

Z 1

0

r00xðyÞf ðyÞdy � r0xð1Þf ð1Þ
	 


; ð12Þ

where

rxðyÞ :¼ rðjy � xjÞ;

i.e., that given in the statement of Theorem 2.1, Eq. (5).
We may consider A as a (generalized) integral operator

ðAf ÞðxÞ ¼
Z 1

0

Kðx; yÞf ðyÞ dy

with kernel

Kðx; yÞ :¼ 1
2
f½rxð0Þ þ rxð1Þ þ r0xð0Þ�d0ðyÞ

þ r00xðyÞ þ ½rxð0Þ þ rxð1Þ � r0xð1Þ�d1ðyÞg: ð13Þ

Here d0ðyÞ denotes the Dirac delta function at y ¼ 0 and d1 that at y ¼ 1:
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For simplicity’s sake, denote

An :¼ RnF�1
n

and consider the matrix In þ lAn; where l 2 C: Its determinant

DnðlÞ :¼ detðIn þ lAnÞ

may be expanded as

DnðlÞ ¼
Xnþ1

k¼0

akðnÞ
k!

lk

for certain coefficients akðnÞ (with a0ðnÞ ¼ 1) which (cf. [8, p. 237]) by
standard determinantal identities may be expressed as

akðnÞ ¼
X

i1;...;ik

Anði1; . . . ; ikÞ; ð14Þ

where Anði1; . . . ; ikÞ denotes the determinant obtained by deleting from An

all of its rows and columns except those labelled i1; . . . ; ik: Explicitly,

Anði1; . . . ; ikÞ ¼

ðAnÞi1i1
� � ðAnÞi1ik

� �
� �

ðAnÞiki1
� � ðAnÞikik

����������

����������
: ð15Þ

The sum in (14) is taken over all distinct 14i1; i2; . . . ; ik4n þ 1: Note
also that determinant (15) is invariant under permutations of the tuple
ði1; i2; . . . ; ikÞ:

Lemma 2.3. Suppose that K is given by (13) and akðnÞ by (14). Then for

each fixed k,

lim
n!1

akðnÞ ¼ ak :¼
Z 1

0

� � �
Z 1

0

K
s1; s2; . . . ; sk

s1; s2; . . . ; sk

 !
ds1 � � � dsk;

where, as is standard,

K
s1; s2; . . . ; sk

t1; t2; . . . ; tk

 !
:¼

Kðs1; t1Þ � � Kðs1; tkÞ
� �
� �

Kðsk; t1Þ � � Kðsk; tkÞ

���������

���������
:
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Proof. Were it not for the presence of the delta functions in K ; this result
would be completely standard in the theory of integral equations (cf. [8,
Chapter 6]). Even then, it is but a minor extension but we outline a proof for
the sake of completeness.

First, note that ak is indeed well-defined (despite the delta functions),
since, as can be seen by expanding along the rows of Kðs1;s2;...;sk

s1;s2;...;sk
Þ; a delta of a

certain variable si is only possibly multiplied by deltas of different variables.
Perhaps the easiest way to understand the proof is by considering the first
few a0

ks:
Now,

a1ðnÞ ¼
Xnþ1

i1¼1

ðAnÞi1i1

¼ r1ðx1Þ þ r1ðxnþ1Þ
2

þ 1

2

Xn

i¼2

ðhi þ hi�1Þri½xi�1; xi; xiþ1�

þ rnþ1ðx1Þ þ rnþ1ðxnþ1Þ
2

þ 1

2
r1½x1; x2� �

1

2
rnþ1½xn; xnþ1�

¼ r1ðx1Þ þ r1ðxnþ1Þ
2

þ 1

2

Xn

i¼2

ðhi þ hi�1Þ
r00i ðciiÞ

2

þ rnþ1ðx1Þ þ rnþ1ðxnþ1Þ
2

þ 1

2
r01ðd1Þ �

1

2
r0nþ1ðenþ1Þ

for some cii 2 ½xi�1; xiþ1�; d1 2 ½x1; x2�; and enþ1 2 ½xn; xnþ1� by the mean
value property of divided differences.

But, explicitly,

r00i ðciiÞ ¼
d2r

dy2
ðjxi � yjÞjy¼cii

so that
Pn

i¼2 ðhi þ hi�1Þr00i ðciiÞ
2

is but a Riemann sum for the integralR 1

0
r00xðxÞ dx: Further, r01ðd1Þ ¼ r0ðd1Þ ! r0ð0Þ ¼ 0 and r0nþ1ðenþ1Þ ¼ �r0ð1 �

enþ1Þ ! �r0ð0Þ ¼ 0: Hence, since we have set x1 ¼ 0 and xnþ1 ¼ 1;

lim
n!1

a1ðnÞ ¼
rð0Þ þ rð1Þ

2
þ 1

2

Z 1

0

r00xðxÞ dx þ rð1Þ þ rð0Þ
2

: ð16Þ

We wish to show that this expression is equal to

a1 ¼
Z 1

0

Kðx; xÞ dx:
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But, from (13),

Z 1

0

Kðx; xÞ dx ¼ 1

2

Z 1

0

½rxð0Þ þ rxð1Þ þ r0xð0Þ�d0ðxÞ þ r00xðxÞ

þ ½rxð0Þ þ rxð1Þ � r0xð1Þ�d1ðxÞ dx

¼ 1

2

("
r0ð0Þ þ r0ð1Þ þ r00ð0Þ� þ

Z 1

0

r00xðxÞ dx:

þ ½r1ð0Þ þ r1ð1Þ � r01ð1Þ
#)

:

This is easily seen to equal the right-hand side of (16) by noting that
r0ð0Þ ¼ rðj0 � 0jÞ ¼ rð0Þ; r0ð1Þ ¼ rðj0 � 1jÞ ¼ rð1Þ; r00ð0Þ ¼ r0ð0Þ ¼ 0; r01ð1Þ ¼
r0ðj1 � 1jÞ ¼ r0ð0Þ ¼ 0; r1ð0Þ ¼ rð1Þ and r1ð1Þ ¼ rð0Þ:

Similarly,

a2ðnÞ ¼
Xnþ1

i1¼1

Xnþ1

i2¼1

ðAnÞi1i1
ðAnÞi1i2

ðAnÞi2i1
ðAnÞi2i2

�����
�����

is a tensor-product Riemann sum for

Z 1

0

Z 1

0

Kðs1; s1Þ Kðs1; s2Þ
Kðs2; s1Þ Kðs2; s2Þ

�����
����� ds1 ds2

and so on. ]

The following estimate is also standard in the theory of integral equations,
complicated only slightly by the presence of the ‘‘deltas’’ in the first and last
columns of An:

Lemma 2.4. Under our assumptions on rðxÞ; there is a constant M > 0
such that

jakðnÞj4Mkkðkþ6Þ=2; k; n ¼ 1; 2; . . . :

Proof. First, let

M1 :¼ max
04y41

maxfjrðyÞj; jr0ðyÞj; jr00ðyÞjg

so that the entries in the first and last columns of An (cf. (11)) are bounded

by 3M1=2 and the entries of column j; 24j4n; are bounded by M1

2
ðhjþhj�1

2
Þ:

Further, our assumptions on the points xi imply that there is some constant
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C > 0 such that

hj4
C

n
; 14j4n

and hence the entries of column j; 24j4n; are bounded by M1

2
C
n
:

Now set

M2 :¼ max
3M1

2
;
M1

2
C; 1

� �

so that

jðAnÞij j4
M2 if j ¼ 1 or j ¼ n þ 1;
M2

n
if 24j4n:

(

We now proceed to bound jAnði1; i2; . . . ; ikÞj; for which we must
distinguish three cases:

Case 1: The indices 1 and n þ 1 both do not appear among fi1; i2; . . . ; ikg: In
this case, the 2-norm of each row of Anði1; i2; . . . ; ikÞ is bounded by M2

n
k1=2 so

that, by Hadamard’s inequality,

jAnði1; i2; . . . ; ikÞj4
Mk

2 kk=2

nk
: ð17Þ

Case 2: Exactly one of the indices 1 and n þ 1 appear among fi1; i2; . . . ; ikg:
Suppose that is ¼ 1 or n þ 1: Then we may expand down the column
corresponding to is to obtain k determinants of dimension ðk � 1Þ � ðk � 1Þ;
each of which does not involve the first or last columns of An; and hence are
each bounded by

Mk�1
2

ðk�1Þðk�1Þ=2

nk�1 : Thus, in this case,

jAnði1; i2; . . . ; ikÞj4k
Mk�1

2 ðk � 1Þðk�1Þ=2

nk�1
: ð18Þ

Case 3: Both 1 and n þ 1 appear among fi1; i2; . . . ; ikg: In this case we
expand as before but down both the corresponding columns to obtain k2

determinants of dimension ðk � 2Þ � ðk � 2Þ; each of which is bounded by

Mk�2
2 ðk � 2Þðk�2Þ=2

nk�2

so that, in this case,

jAnði1; i2; . . . ; ikÞj4k2Mk�2
2 ðk � 2Þðk�2Þ=2

nk�2
: ð19Þ
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Now, to bound jakðnÞj we simply note that there are ðn � 1Þk possibilities for
case (1), 2ðk

1
Þðn � 1Þk�1 possibilities for case (2) and ðk

2
Þðn � 1Þk�2 for case

(3). Hence, by (17)–(19) we have

jakðnÞj4ðn � 1ÞkMk
2 kk=2

nk
þ 2

k

1

 !
ðn � 1Þk�1

k
Mk�1

2 ðk � 1Þðk�1Þ=2

nk�1

þ
k

2

 !
ðn � 1Þk�2

k2 Mk�2
2 ðk � 2Þðk�2Þ=2

nk�2

4Mkkðkþ6Þ=2

for suitably chosen M: ]

In particular, it follows that we may also bound

ak ¼ lim
n!1

akðnÞ

by

jakj4Mkkðkþ6Þ=2:

Then, using the fact that k!5kk=ek; we have

ak

k!

��� ���4Mkekkð6�kÞ=2

and hence

DðlÞ :¼
X1
k¼0

ak

k!
lk

has infinite radius of convergence and is an entire function. DðlÞ is nothing
more than the Fredholm determinant of our operator A:

We now quote a lemma of Hilbert, in slightly modified form.

Lemma 2.5. (Hilbert [7, Hilfsatz 1, p. 9]). With the above notation and

associated assumptions

lim
n!1

DnðlÞ ¼ DðlÞ;

uniformly in l on compact subsets of C:

Proof. Consider jlj4R and let e > 0 be given.
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First, choose m so large that

X1
k¼mþ1

Mkekkðk�6Þ=2lk

�����
�����4e=3

for all jlj4R so that, by Lemma 2.4,

X1
k¼mþ1

ak

k!
lk

�����
�����4e=3 ð20Þ

and

DnðlÞ �
Xm

k¼0

akðnÞ
k!

lk

�����
����� ¼

Xnþ1

k¼mþ1

akðnÞ
k!

�����
�����4e=3 ð21Þ

for n > m:
Then, for such a fixed m; choose n so large that

Xm

k¼0

akðnÞ
k!

lk �
Xm

k¼0

ak

k!
lk

�����
�����4e=3 ð22Þ

(which we may do, since by Lemma 2.3, akðnÞ ! ak for each k). Then, from
(20) to (22) it follows that

jDnðlÞ � DðlÞj ¼ DnðlÞ �
X1
k¼0

ak

k!
lk

�����
�����

4 DnðlÞ �
Xm

k¼0

akðnÞ
k!

lk

�����
�����þ

Xm

k¼0

akðnÞ
k!

lk �
Xm

k¼0

ak

k!
lk

�����
�����

þ
X1

k¼mþ1

ak

k!
lk

�����
�����

4
e
3
þ e

3
þ e

3
¼ e: ]

Returning now to the proof of Theorem 2.1, note that

detðGnÞ
detðFnÞ

¼ detðGnF�1
n Þ

¼ detðIn þ RnF�1
n Þ

¼DnðlÞ
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for l ¼ 1: Thus, by Lemma 2.5,

lim
n!1

detðGnÞ
detðFnÞ

¼ Dð1Þ;

which is not zero precisely when �1 (�g0ð0Þ in our case) is not an eigenvalue
of the operator A: ]

Remark. It is natural to ask whether our main result also holds for
functions g with g0ð0Þ ¼ 0: However, our argument is that for g0ð0Þa0 we
may reduce to the basic case gðxÞ ¼ x: The function gðxÞ ¼ x3; for example,
is already fundamentally different. If we consider even the case of equally
spaced points, the entries of ½jxi � xjj3� are of order n�3 while those of
½jxi � xj j� are of order n�1: Hence we cannot reduce the case of gðxÞ ¼ x3 to
that of gðxÞ ¼ x using the arguments presented here. Nevertheless,
numerical experiments indicate that the Fekete type points for gðxÞ ¼ x3

(and other functions with g0ð0Þ ¼ 0) do remain asymptotically equally
spaced; it is just that our arguments do not directly apply to this case. Hence
an analysis of the g0ð0Þ ¼ 0 case remains an intriguing open problem, which
we hope to be the subject of a subsequent paper.
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